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Abstract. We study classical solutions of one dimensional rotating shallow water system which

plays an important role in geophysical fluid dynamics. The main results contain two contrasting

aspects. First, when the solution crosses certain threshold, we prove finite-time singularity

formation for the classical solutions by studying the weighted gradients of Riemann invariants

and utilizing conservation of physical energy. In fact, the singularity formation will take place for

a large class of C1 initial data whose gradients and physical energy can be arbitrarily small and

higher order derivatives should be large. Second, when the initial data have constant potential

vorticity, global existence of small classical solutions is established via studying an equivalent

form of a quasilinear Klein-Gordon equation satisfying certain null conditions. In this global

existence result, the smallness condition is in terms of the higher order Sobolev norms of the

initial data.

1. Introduction and Main Results

The one-dimensional rotating shallow water system plays an important role in the study

of geostrophic adjustment and zonal jets (e.g. [28, 10]). Upon suitable rescaling, the one-

dimensional rotating shallow water system in Eulerian form reads
∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x(hu
2) + ∂xh

γ/γ = hv,

∂t(hv) + ∂x(huv) = −hu,

(1)

where h denotes the height of the fluid surface, u denotes the velocity component in the x-

direction, and v is the other horizontal velocity component that is in the direction orthogonal to

the x-direction. The Coriolis force, caused by a rotating frame, is represented by the (hv,−hu)T

terms on the right-hand side of the last two equations of (1). For the rotating shallow water

model, one has γ = 2 in the pressure law ([6]), but in this paper we will prove results that are

valid for the general case γ ≥ 1.

The system (1) is a typical one dimensional system of balance laws, which has attracted

plenty of studies since Riemann [7]. One of the most important features of nonlinear hyperbolic
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system of conservation laws is that the wave speed depends on the solution itself so that the

classical solutions in general are expected to form singularity in finite time (cf. [17, 14]). In fact,

the system (1) can also be regarded as one dimensional compressible Euler system with source

terms. The formation of singularity and critical threshold phenomena for the compressible Euler

system without or with certain special source terms were studied in [19, 27, 3] and references

therein. The additional source terms very often demand substantial novel techniques in addition

to the classical singularity formation theory developed in [17, 14] and subsequent literature.

On the other hand, with (h, u, v) depending only on (t, x)-variables, the system (1) can be

regarded as a special case of the two dimensional rotating shallow water system ([23]). The

latter is a widely used approximation of the three dimensional incompressible Euler equations

and the Boussinesq equations in the regime of large scale geophysical fluid motion. In the two

dimensional setting, it is shown in [5] that there exist global classical solutions for a large class

of small initial data subject to the constant potential vorticity constraint, which is analogue

of the irrotational constraint for the compressible Euler equations. Since classical solutions of

two dimensional compressible Euler system in general form singularity (c.f. [24]), the result of

[5] evidences that the Coriolis forcing term plays a decisive role in the global well-posednesss

theory for classical solutions of compressible flows. A key ingredient in the proof of [5] is that

the rotating shallow water system and in fact also its one dimensional reduction, when subject

to the (invariant) constant potential vorticity constraint, can be reformulated into a quasilinear

Klein-Gordon system. Note that the solutions of Klein-Gordon equations are of faster dispersive

decay than those of the corresponding nonlinear wave system, the latter of which is derived from

non-rotating fluid models. The rate of this dispersive decay, however, is tied to spatial dimension.

In fact, in the one dimensional setting, the decay rate of Klein-Gordon system is not fast enough

for the global existence theory of [5] to be directly applied to the system (1).

In short, for studying the lifespan and global existence of classical solution for the one dimen-

sional rotating shallow water system, we have to introduce novel techniques and investigate the

nonlinear structure of the system (1) more carefully.

The main objectives of this paper are two-fold. First, we study the formation of singularities

for a general class of C1 initial data by capturing the nonlinear interactions in the system

(1). These initial data can have arbitrary small gradients and physical energy but higher order

derivatives should be large. Second, we take a careful look at the structure of the system (1),

exploit the dispersion provided by the Coriolis forcing terms, and show the global existence of

classical solutions for a class of small initial data that are of small size in terms of higher order

Sobolev norms.

Before stating the main theorems, we first rewrite the system (1) in the Lagrangian coordi-

nates, which takes a simpler form in one dimensional setting.

Assume the initial height field h(0, x) = h0(x) ∈ C1(R) is strictly away from vacuum, i.e.,

0 < ch ≤ h0(x) = h(0, x) ≤ Ch. It then induces a “coordinate stretching” at t = 0 specified by
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a C2 bijection ϕ : R → R defined as

ξ = ϕ(x) :=

∫ x

0
h(0, s) ds, (2)

whose inverse function can be written as x = ϕ−1(ξ). Assume u ∈ C1([0, T )×R). Let σ(t, ξ) be
the unique particle path determined by{

∂tσ(t, ξ) = u(t, σ(t, ξ)),

σ(0, ξ) = ϕ−1(ξ),
(3)

so that for each fixed t ∈ [0, T ), we have a C1 bijection x = σ(t, ξ) : R → R. Define

h̃(t, ξ) := h(t, σ(t, ξ)), ũ(t, ξ) := u(t, σ(t, ξ)), and ṽ(t, ξ) := v(t, σ(t, ξ)). (4)

In the Appendix A, we show that (h, u, v) solves the system (1) if and only if (h̃, ũ, ṽ) defined

in (4) is a solution of the following rotating shallow water system in the Lagrangian form,
∂th̃+ h̃2∂ξũ = 0,

∂tũ+ ∂ξh̃
γ/γ − ṽ = 0,

∂tṽ + ũ = 0.

(5)

For the rest of the paper, we deal with the system (5). For convenience, we drop the tilde signs

in h̃, ũ, ṽ when there is no ambiguity for the presentation. Thus, in the Lagrangian coordinates,

the rotating shallow water system (5) can be written as
∂th+ h2∂ξu = 0,

∂tu+ ∂ξ
(
hγ/γ

)
− v = 0,

∂tv + u = 0 .

(6)

The objective in this paper is then to study the Cauchy problem for the system (6) with initial

data

(h, u, v)(0, ξ) = (h0(ξ), u0(ξ), v0(ξ)) for ξ ∈ R . (7)

For any C1 solution of (6), it follows from (6) that one has

∂t

(1
h
+ ∂ξv

)
= 0. (8)

This is a key geophysical property of rotating fluid which is conservation of potential vorticity.

Therefore, we have the invariance of the potential vorticity

1

h(t, ξ)
+ ∂ξv(t, ξ) =

1

h(0, ξ)
+ ∂ξv(0, ξ) := ω0(ξ) (9)

in the Lagrangian form.

Before stating the main theorems, some notations are in order. Inspired by the techniques of

[27] by Tadmor and Wei, we introduce the “weighted gradients of Riemann invariants”,

Zj =
√
h
[
∂ξu+ (−1)jh

γ−3
2 ∂ξh

]
for j = 1, 2. (10)
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Also, define

Z♯
0 := sup

ξ
max
1≤i≤2

Zi(0, ξ) and ω♯
0 := sup

ξ
ω0(ξ) . (11)

The first main result is on the formation of singularities for classical solutions and consists of

two theorems.

Theorem 1. Fix T ′ ≥ 0. Consider a classical solution (h, u, v) ∈ C1([0, T ′]×R) to the rotating

shallow water system (6) with initial data satisfying infξ h0 > 0 and (h0 − 1, u0, v0) ∈ C1
0 (R). If

inf
ξ

min
1≤i≤2

Zi(T
′, ξ) ≤ −

√
2ω♯

0 , (12)

then the solution must develop a singularity in finite time t = T ♯ > T ′ in the following sense

inf
0≤t<T ♯,

ξ∈R

h(t, ξ) > 0, sup
0≤t<T ♯,

ξ∈R

max{h(t, ξ), |u(t, ξ)|, |v(t, ξ)|} < ∞, (13)

and

sup
0≤t<T ♯,

ξ∈R

max
1≤j≤2

Zj(t, ξ) < ∞, lim
t↗T ♯

inf
ξ∈R

min
1≤j≤2

Zj(t, ξ) = −∞ . (14)

The proof of Theorem 1 is given in Section 3.1.

Remark 1. It follows from the conservation of potential vorticity and the bounds for h in

(13) that ∂ξv is bounded even when the singularity is formed. Furthermore, it follows from the

definition of Zj (j = 1, 2) in (10) and the estimates in (13)-(14) that we have

lim
t↗T ♯

inf
ξ∈R

∂ξu(t, ξ) = −∞ .

Obviously, if the initial data satisfy (12), then the solution of the problem (6) form singularities

in finite time. In fact, we can also characterize a class of initial data which does not satisfy (12)

at the initial time, but rather evolve to satisfy (12), and eventually form a singularity according

to the above theorem.

We define physical energy of the rotating shallow water system as

E(t) :=

∫ ∞

−∞

1

2
(u2 + v2)(t, ξ) +Q(h(t, ξ)) dξ, (15)

where

Q(h) :=
1

γ

∫ h

1
(sγ−2 − s−2) ds ≥ 0 . (16)

Finally, define

E0 = E(0) and G0 :=

√
2ω♯

0 +max
{
Z♯
0,

√
2ω♯

0

}
, (17)

where ω♯
0 and Z♯

0 are defined in (11).
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Theorem 2. Consider the Cauchy problem for the system (6) subject to initial data (7) satis-

fying (h0 − 1, u0, v0) ∈ C1
0 (R) and infξ h0 > 0. Suppose

inf
ξ

min
1≤i≤2

Zi(0, ξ) < −
√
2

√
ω♯
0 −

[
F−1
γ

(
G0E0

)
+ 1

]− 2
γ

(18)

where F−1
γ is the inverse function of the function Fγ(·) defined by

Fγ(α) : =
16

3γ3
α3

(α+ 1)3

{
(α+ 1)

3− 2
γ + (α+ 1)

3− 2
γ
−1

}
. (19)

Then the solution must develop a singularity in finite time t = T ♯ in the sense of (13) and (14).

The proof of Theorem 2 is a straightforward combination of Theorems 1 and 9. We have the

following remarks.

Remark 2. Straightforward computations show that Fγ defined in (19) is a monotonically

increasing function mapping (0,∞) to (0,∞). Hence the inverse function F−1
γ is always well-

defined on (0,∞).

Remark 3. If (h0 − 1, v0) are compactly supported, it follows from (9) that one always has

ω♯
0 ≥ 1, so all the square roots in (12), (17), and (18) are always real.

Remark 4. We consider only the initial data such that (h0−1, u0, v0) are compactly supported.

As the propagation of information for general data is at a finite speed, the results in Theorems

1 and 2 can be easily extended to general initial data without compact support. Also thanks

to the finite speed of propagation, when the initial data are indeed compactly supported and a

singularity does develop in finite time as in (12) and (14), we actually have the singularity occur

at a finite location as well.

Remark 5. The singularity formation criterion (18) allows arbitrarily small initial gradients at

the order of O(E
1/3
0 ). Indeed, by definition of Fγ in (19), we have

lim
α↘0

Fγ(α)

α3
=

32

3γ3
.

Therefore, with G0 > 0 bounded above by a constant, we can find positive constants C and E0

so that

C−1E0
1/3 ≤ F−1

γ

(
G0E0

)
≤ CE0

1/3 for all E0 < E0. (20)

Then, by choosing arbitrarily small E0 < E0 and choosing ω♯
0 to be arbitrarily close to 1 (with

the most convenient choice being h0 ≡ 1, v0 ≡ 0), we make the right hand side of (18) at order

O(E
1/3
0 ). This in turn allows us to choose initial data having small gradients, i.e.,

Zj

∣∣∣
t=0

= inf
x

{√
h
[
∂ξu+ (−1)jh

γ−3
2 ∂ξh

]}∣∣∣
t=0

∼ O(E
1/3
0 )

which satisfy the condition (18) for the singularity formation.
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Remark 6. The singularity formation criterion (18) also reflects the fact that we utilize physical

energy and its conservation to prove pointwise singularity formation.

In fact, if the initial data has not only small gradients, but also small higher derivatives in

Sobolev spaces, there is a global existence of classical solutions for rotating shallow water system.

This is our next main result on the global existence of classical solutions for rotating shallow

water system.

Theorem 3. Consider the Cauchy problem (6) and (7) subject to compactly supported initial

data (h0 − 1, u0, v0) with infξ h0 > 0. Suppose that ω0 ≡ 1. Then, there exists a small positive

number δ so that if the Sobolev norm ∥u0∥Hk(R) + ∥v0∥Hk+1(R) < δ for some sufficiently large

integer k, then there is a global classical solution for the problem (6) and (7) for all time t ≥ 0.

Theorem 3 is proved in Section 4. There are a few remarks in order.

Remark 7. In Theorem 3, we consider only the data close to the constant state (1, 0, 0). In

fact, the results also hold for any data close to (H̄0, 0, 0) with a constant H̄0.

Remark 8. Although the singularity formation result in Theorem 2 allows arbitrarily small

initial gradients at the order of O(E
1/3
0 ) for any sufficiently small E0, Theorem 2 and Theorem

3 are compatible, or more precisely, they characterize different sets of initial data. To see this,

we recall Gagliardo-Nirenberg interpolation inequality to have

∥∂ξu0∥L∞(R) ≤ C∥u0∥H2(R) ≤ C∥u0∥
2
k

Hk(R) ∥u0∥
1− 2

k

L2(R) ≤ C δ
2
k E

1
2
− 1

k
0 .

For any initial data satisfying the assumptions in Theorem 3 with k ≥ 7 so that ω0 ≡ 1 = ω♯
0

and small E0 < δ, one has

∥∂ξu0∥L∞(R) ≤ Cδ
2
kE

5/14
0 .

Applying similar argument to 1− 1
h0

= ω0 − 1
h0

= ∂ξv0 shows that

∥h0 − 1∥L∞(R) + ∥∂ξh0∥L∞(R) ≤ Cδ
2
kE

5/14
0 ,

which is much smaller than O(E
1/3
0 ). By the lower bound in (20), it is impossible for such initial

data to also satisfy the assumption (18) of Theorem 2 as long as we choose δ in Theorem 3 to

be sufficiently small.

Remark 9. By the Theorem 3 above, with sufficiently small initial data, there is a global

solution for the rotating shallow water system, which is fundamentally different from the non-

rotating, compressible Euler system [14]. This shows that the rotation plays an important role

in the well-posedness theory of classical solutions to the partial differential equations modeling

compressible flows.
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Remark 10. In fact, the results on both singularity formation and global existence in this paper

also work in the similar fashion for the one dimensional Euler-Poisson system with a nonzero

background charge for hydrodynamical model in semiconductor devices and plasmas. We would

also like to mention the recent work [11] where the global existence of classical solutions for the

Euler-Poisson system with small initial data was proved via a different method.

The rest of the paper is organized as follows. In Section 2, we introduce the Riemann invariants

and weighted gradients of Riemann invariants, and give some basic estimates for these quantities.

In Section 3, we prove the finite time formation of singularity via investigating the weighted

gradients of Riemann invariants and utilizing conservation of physical energy. In Section 4, we

reformulate the Lagrangian rotating shallow water system subject to constant potential vorticity

into a one dimensional Klein-Gordon equation which is then shown to satisfy the null conditions

in [8]. The results in [8] help establish the global existence of small classical solutions. We

also provide two appendices. Appendix A contains the proof for the equivalence between the

Eulerian form of rotating shallow water system (1) and its Lagrangian form (5). In Appendix

B, we present two elementary lemmas which are used to prove the singularity formation for the

rotating shallow water system.

2. Riemann Invariants and Their Basic Estimates

The system (6) is a typical 3× 3 system of balance laws. One way to diagonalize the system

of balance laws is to write the system in terms of the Riemann invariants. However, a 3 × 3

system usually does not have 3 full Riemann invariant coordinates [7]. Fortunately, the system

(6) has 3 full Riemann invariant coordinates Ri (i = 1, 2, 3), so that the system (6) is recast into

a “diagonalized” form, 
∂tR1 − h

γ+1
2 ∂ξR1 −R3 = 0 ,

∂tR2 + h
γ+1
2 ∂ξR2 −R3 = 0 ,

∂tR3 +
R1 +R2

2
= 0 ,

(21)

where, by borrowing notations from the so-called p-system, we let p( 1h) =
hγ

γ , i.e., p(s) := s−γ

γ

and define Riemann invariants as

R1 := u+

∫ 1
h

1

√
−p′(s) ds = u−K(h),

R2 := u−
∫ 1

h

1

√
−p′(s) ds = u+K(h),

R3 := v,

(22)

with, apparently,

K(h) :=

∫ h

1
s

γ−3
2 ds . (23)
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Note that h can be expressed in terms of the Riemann invariants as

h = ϑ
(R2 −R1

2

)
with ϑ(z) = K−1(z) =


(
γ−1
2 z + 1

) 2
γ−1

, γ > 1,

ez, γ = 1.
(24)

Based on the Riemann invariants formulation alone, we have the following estimates related

to the L∞ bounds of the solutions which then lead to an important upper bound for h and

consequently the finite speed of propagation.

Lemma 4. Fix T > 0. Let (h, u, v) ∈ C1([0, T ]×R) with h > 0 solve system (6) and equivalently

(21). Suppose

Z♯
0, ω

♯
0, inf

ξ
h0 and sup

ξ
{h0, |u0|, |v0|} are all finite and positive (25)

and

M0 := sup
ξ∈R

{|R1(0, ξ)|, |R2(0, ξ)|, |R3(0, ξ)|} < ∞.

Then, at any t ∈ [0, T ], we have

sup
ξ∈R

{|R1(t, ξ)|, |R2(t, ξ)|, |R3(t, ξ)|} ≤ M0e
t (26)

and

sup
ξ∈R

h(t, ξ) ≤ θ♯(t) := ϑ(M0e
t) =


(
γ−1
2 M0e

t + 1
) 2

γ−1
, γ > 1,

e(M0et), γ = 1.
(27)

Proof. Obviously, the estimate (27) is a consequence of the representation (24) and the

estimate (26). So we need only to prove the estimate (26). Then, it suffices to show that, for

any ε > 0, N > 0, we have

max
(t,ξ)∈AN,T,ε

max
1≤i≤3

|e−tRi|(t, ξ) < M0ε := M0 + ε, (28)

where AN,T,ε (see Fig. 1) is the trapezoid

AN,T,ε :=
{
(t, ξ) ∈ [0, T ]× R

∣∣∣ |ξ| ≤ N + (T − t)
[
ϑ(eT (M0ε + ε))

] γ+1
2

}
. (29)

Suppose that the estimate (28) is not true. By the compactness of AN,T,ε, there must exist

an earliest time t′ so that

max
(t,ξ)∈AN,T,ε

t∈[0,t′]

max
1≤i≤3

|e−tRi|(t, ξ) = M0ε. (30)

Note the definition of M0 implies that t′ > 0. The speeds of the characteristics of (21) are

−h
γ+1
2 , 0, and h

γ+1
2 , respectively. It follows from (24) and (30) that one has

h
γ+1
2 <

[
ϑ(eT (M0ε + ε))

] γ+1
2 for (t, ξ) ∈ AN,T,ε and t ∈ [0, t′].
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Thus, the above estimate together with the definition of AN,T,ε in (29) guarantees that all

characteristics of (21) emitting from (t′, ξ′) and going backward in time always stay within

AN,T,ε. Now, introduce

m♯(t) := max
(t,ξ)∈AN,T,ε

max
1≤i≤3

Ri(t, ξ) and m♭(t) := min
(t,ξ)∈AN,T,ε

max
1≤i≤3

Ri(t, ξ) .

Then, for any t ∈ (0, t′], upon integrating each equation of (21) along the associated characteristic

from 0 to t, we have

m♯(t) ≤ m♯(0) +

∫ t

0
max{m♯(s), −m♭(s)} ds

and

m♭(t) ≥ m♭(0) +

∫ t

0
min{−m♯(s), m♭(s)} ds .

Therefore, we have

max{m♯(t), −m♭(t)} ≤ max{m♯(0), −m♭(0)}+
∫ t

0
max{m♯(s), −m♭(s)} ds .

Therefore, max{m♯(t), −m♭(t)} satisfies a Gronwall’s inequality which leads to

max{m♯(t), −m♭(t)} ≤ et max{m♯(0), −m♭(0)} ≤ etM0 for all t ∈ (0, t′] .

This contradicts (30). Hence the lemma is proved. 2

The upper bound of h in (27) allows us to define the following trapezoidal regions, similar to

(29), in the spirit of domain of dependence and domain of influence.

Ωbw
N,T :=

{
(t, ξ) ∈ [0, T ]× R

∣∣∣ |ξ| ≤ N + (T − t)
[
ϑ(eT (M0 + 1))

] γ+1
2

}
, (31)

Ωfw
N,T :=

{
(t, ξ) ∈ [0, T ]× R

∣∣∣ |ξ| ≤ N + t
[
ϑ(eT (M0 + 1))

] γ+1
2

}
. (32)

−N N

T

t

ξ

Ω
bw

N,T

AN,T,ε

−N N

T

t

ξ

Ω
fw

N,T

Fig. 1 Ωbw
N,T and AN,T,ε Fig. 2 Ωfw

N,T
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Under the assumptions of Lemma 4, we have that characteristics with speed ±h
γ+1
2 or 0

emitting from within Ωbw
N,T (resp. Ωfw

N,T ) and going backward (resp. forward) in time always

stay within Ωbw
N,T (resp. Ωfw

N,T ) till t = 0 (resp. t = T ).

Note that it is crucial that we shall also prove the lower bound of h to be strictly above 0,

which will be dealt with later.

2.1. Dynamics of gradients of Riemann invariants. Here, we follow the original idea of

Lax ([17]) to study the dynamics of gradients of Riemann invariants and will further reformulate

the system inspired by the method in [27] by Tadmor and Wei. Note that despite the similarity

of our equations with those of [27], their ODEs [27, (3.12)] for weighted gradients of the Riemann

invariants do not have a term that corrsponds to 1/h term in our ODEs (38). This is in fact

one of the main technical difficulties we have to tackle here.

First, differentiating the first two equations of (21) with respect to ξ givesD1(∂ξR1)− ∂ξ(h
γ+1
2 )(∂ξR1) = ∂ξR3,

D2(∂ξR2) + ∂ξ(h
γ+1
2 )(∂xR2) = ∂ξR3,

(33)

where

D1 := ∂t − h
γ+1
2 ∂ξ and D2 := ∂t + h

γ+1
2 ∂ξ.

It follows from (23) and (24) that one has

∂ξh =
1

K′(h)

∂ξR2 − ∂ξR1

2
= h−

γ−3
2

∂ξR2 − ∂ξR1

2
,

so

∂ξ(h
γ+1
2 ) =

γ + 1

2
h

γ−1
2 ∂ξh =

γ + 1

2
h
∂ξR2 − ∂ξR1

2
.

Combine this with potential vorticity conservation (9) and transform (33) into
D1(∂ξR1) =

γ + 1

4
h (∂ξR2 − ∂ξR1)(∂ξR1) + ω0 −

1

h
,

D2(∂ξR2) =
γ + 1

4
h (∂ξR1 − ∂ξR2)(∂ξR2) + ω0 −

1

h
.

(34)

We also use ∂ξR1, ∂ξR2 and the first equation in (6) to rewrite the dynamics of h as

∂th+
h2(∂ξR2 + ∂ξR1)

2
= 0. (35)

It follows from the definition of R1 and R2 that one has

h2(∂ξR2 − ∂ξR1)

2
= h2∂ξK(h) = h

γ+1
2 ∂ξh. (36)

Substituting (36) into (35) gives

D1h = −h2∂ξR2 and equivalently D2h = −h2∂ξR1 . (37)
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Recall the definitions of Riemann invariants in (22) and of weighted gradients of Riemann

invariants Zj (j = 1, 2) in (10) to rewrite

Z1 =
√
h∂ξR1 and Z2 =

√
h∂ξR2 .

Then, combine (34) and (37) to derive dynamics of Zj along the characteristics,

DjZj =
√
h

[
−(γ + 1

2)Z
2
j + γZ1Z2 + ω0(ξ)−

1

h

]
, j = 1, 2, (38)

where γ = γ−1
4 ≥ 0. Furthermore, it follows from (35) that we have

∂th = −1

2
h3/2 (Z1 + Z2), i.e. ∂t

1√
h
=

1

4
(Z1 + Z2). (39)

2.2. Upper bound for weighted gradients of Riemann invariants. The following lemma

uses the above formulation in terms of the weighted gradients of Riemann invariants to show an

upper bound of Zj and consequently a positive lower bound of h.

Lemma 5. Fix T > 0. Under the same assumptions and notations as in Lemma 4, we have

that at any t ∈ [0, T ],

Zj ≤ W ♯
0 := max

{
Z♯
0,

√
2ω♯

0

}
for j = 1, 2, (40)

and

h ≥
[ 1√

infξ h0
+

t

2
W ♯

0

]−2
. (41)

Proof. Consider any large but compact region Ωbw
N,T as defined in (31). It is a domain of

dependence for its every time slice. Then it follows from (39) and infξ h0 > 0 that h is always

positive in Ωbw
N,T . Now, it suffices to show

max
Ωbw

N,T

{Z1, Z2} ≤ W ♯
0 , (42)

and

max
Ωbw

N,T

1√
h
≤ 1√

infξ h0
+

t

2
W ♯

0 . (43)

Noting that Z♯
0 > 0, we assume without loss of generality that at some (t′, ξ′) ∈ Ωbw

N,T ,

Z1(t
′, ξ′) = max

Ωbw
N,T

{Z1, Z2} > 0. (44)

If the maximum in (44) is attained at t′ = 0, then the estimate (42) is apparently true. Otherwise,

the maximum in (44) is achieved for t′ > 0. Therefore, one has D1Z1(t
′, ξ′) ≥ 0. This, together

with (38), yields

√
h

[
−(γ + 1

2)Z
2
1 + γZ1Z2 + ω0(ξ)−

1

h

]
≥ 0 at (t′, ξ′).
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Since Z1(t
′, ξ′) ≥ Z2(t

′, ξ′) and Z1(t
′, ξ′) > 0, we have

−1

2
Z2
1 + ω♯

0 ≥
1

h
> 0 at (t′, ξ′).

This proves the estimate (42). The estimate (43) is a direct consequence of equation (39) and

the estimate (42). 2

Although the results proved so far are regarding closed time interval [0, T ], this is not so

essential. In fact, for any small ε > 0, we can replace every T by T − ε in Lemmas 4 and 5

and still obtain the corresponding estimates. Since these estimates are regardless of ε, we can

let ε approach zero and establish that all estimates in Lemmas 4 and 5 are still valid if we

replace every occurrence of [0, T ] by [0, T ) in their conditions and conclusions. Now, we obtain

the following corollary that characterizes the type of possible singularities that a solution may

develop.

Corollary 6. Given the same type of initial conditions as in Lemma 4, suppose a C1 solution

exists over time interval [0, T ] (resp. [0, T )). Then, for all t ∈ [0, T ] (resp. t ∈ [0, T )) and all

ξ ∈ R, we have (h, |u|, |v|, |∂ξv|) as well as Z1 and Z2 to be uniformly bounded from above, and

have h to be uniformly bounded from below by a positive constant.

Furthermore, if a classical solution indeed loses C1 regularity at a finite time t = T ♯, then

infξ{Z1, Z2} → −∞ as t → T ♯ while Z1 and Z2 remain bounded from above.

3. Formation of Singularities

Let us recollect the bounds obtained so far, independent of the size of initial data, we have

obtained upper bound (27) and positive lower bound (41) for h; and upper bound (40) for Z1

and Z2. Since the solution itself is always bounded as proved in Lemma 4, the only possible

singularity for a classical solution is for Z1 or Z2 approaching −∞.

In this section, we first prove a threshold using comparison principle, so that if infξ{Z1, Z2} is

equal to or below this threshold at some time, then it will approach −∞ at some late finite time.

Next, we impose this threshold as an additional lower bound on Z1, Z2 and prove a singularity

formation with initial data which can have arbitrarily small gradients. A key and novel technique

is to combine the lower and upper bounds of Z1, Z2 and the conservation of physical energy to

control the positive terms in the equations for D1Z1, D2Z2 so that the decay of infξ{Z1, Z2} is

sufficient for it to reach the threshold that has been just proved. This then eventually leads to

loss of C1 regularity in finite time.

We have the following important comparison principle for the infimum of Zj(t, ·).

Lemma 7 (Strict comparison principle). Fix T > 0. Consider a classical solution

(h, u, v) ∈ C1([0, T )× R)
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to the rotating shallow water system (6) with C1
0 initial data (h0 − 1, u0, v0) so that infξ h0 > 0.

Let a function m(t) ∈ C1([0, T )) satisfy the following strict differential inequality and initial

condition 
sup
ξ∈R

√
h(t, ξ)

[
− 1

2
m2(t) + ω♯

0 −
1

h(t, ξ)

]
<

d

dt
m(t) < 0 ,

inf
ξ

min
j=1,2

Zj(0, ξ) ≤ m(0) < 0 .
(45)

Then, for any t ∈ (0, T ),

inf
ξ∈R

min
j=1,2

Zj(t, ξ) < m(t) . (46)

We recall that the upper and positive lower bounds of h have been established, so the left

hand side of (45) is always well-defined.

Proof. With compactly supported initial data (h0−1, u0, v0), by the bounds of h, which leads

to the finite propagation speed of the solutions, we have that Zj(t, ·) (j = 1, 2) is also compactly

supported, so

Z♭(t) := inf
ξ∈R

min
j=1,2

Zj(t, ξ) for t ∈ [0, T ) , (47)

is a well-defined continuous function as long as the C1 solution exists.

Since Z♭(0) ≤ m(0) and the initial data has compact support, without loss of generality, there

exists a ξ′ ∈ R such that Z1(0, ξ
′) ≤ m(0) < 0 and Z1(0, ξ

′) ≤ Z2(0, ξ
′). Hence one has

√
h

(
−1

2
Z2
1 + γ̄Z1(Z2 − Z1) + ω♯

0 −
1

h

)
(0, ξ′)

≤
√
h

(
−1

2
Z2
1 + ω♯

0 −
1

h

)
(0, ξ′)

≤
√
h(0, ξ′)

(
−1

2
m2(0) + ω♯

0 −
1

h
(0, ξ′)

)
.

This, together with the equations (38) and (45), implies

D1Z1(0, ξ
′) <

d

dt
m(0),

where the characteristic curve associated with D1Z1 emits from (0, ξ′). Therefore, there exists

a time T0 ∈ (0, T ] so that

Z♭(t) < m(t) for all t ∈ (0, T0). (48)

Noting that the inequality in (48) is a strictly inequality in an open interval (0, T0), we can

choose T0 to be the supremum of all such time in (0, T ). Then, in order to show (46), it suffices

to prove T0 = T . We prove it by contradiction.

Suppose T0 < T . Then, we must have m(T0) = Z♭(T0) so that by the definition of Z♭,

m(T0) ≤ Zj(T0, ξ), for any j = 1, 2 and any ξ ∈ R . (49)
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Next, note that the differential inequality in (45) is valid in the closed interval [0, T0] with all

its terms being continuous and with h bounded from below by a positive constant. Therefore,

there exists an ε > 0 so that

sup
ξ∈R

√
h(t, ξ)

[
− 1

2
m2(t) + ω♯

0 −
1

h(t, ξ)

]
<

d

dt
m(t)− ε , for all t ∈ [0, T0] . (50)

Now, for any t0 ∈ (0, T0), by (48) and solution being compactly supported, we assume without

loss of generality that

Z1(t0, ξ0) = Z♭(t0) < m(t0) < 0 for some ξ0 ∈ R , (51)

where the last inequality is due to the assumption that both m(0) and m′(t) are negative.

Let Ξ(t) be the solution of the following Cauchy problem for ODE
d

dt
Ξ(t) = −h

γ+1
2 (t,Ξ(t)),

Ξ(t0) = ξ0.

Hence
{
(t,Ξ(t))

∣∣∣ t0 ≤ t ≤ T0

}
is the characteristic curve associated with D1Z1. By (49), (51),

we have

m(T0)−m(t0) < Z1(T0,Ξ(T0))− Z1(t0, ξ0) ,

which is equivalent to ∫ T0

t0

m′(t) dt <

∫ T0

t0

D1Z1 dt.

Apply the equations (38) for Z1 to arrive at∫ T0

t0

{
m′(t)−

√
h
[
− (γ + 1

2)Z
2
1 + γZ1Z2 + ω0 −

1

h

]
(t,Ξ(t))

}
dt < 0.

Since m(t) ∈ C1, applying the intermediate value theorem yields that for some τ(t0) ∈ (t0, T0),

m′(τ(t0))−
√
h
[
− (γ + 1

2)Z
2
1 + γZ1Z2 + ω0 −

1

h

]
(τ(t0),Ξ(τ(t0))) < 0 . (52)

Note that by the definition of Z1, Z2, the positive lower bound of h, the hypothesis that (h, u, v)

is C1, and the fact that the curve (t,Ξ(t)) is C1 and contained in a compact region, we must

have Z1(t,Ξ(t)), Z2(t,Ξ(t)),
√

h(t,Ξ(t)), and 1/h(t,Ξ(t)) to be uniformly continuous functions

of t over [t0, T0] and the modulus of continuity is independent of the choice of t0. Therefore,

for the same ε as in (50), we can choose T0 − t0 to be sufficiently small, making τ(t0)− t0 even

smaller, so that by (52),

m′(t0) <
√
h
(
− (γ + 1

2)Z
2
1 + γZ1Z2 + ω0 −

1

h

)
(t0,Ξ(t0)) + ε .

It follows from (51) that one has

m′(t0) <
√

h(t0, ξ0)
[
− 1

2
m2(t0) + ω0 −

1

h(t0, ξ0)

]
+ ε .
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This is a contradiction to (50). The proof of the lemma is completed. 2

3.1. Existence of a threshold for formation of singularity. Now we prove Theorem 1,

which shows that the loss of C1 regularity always takes place in finite time, provided at some

time t, the minimum of Zj is below the time-independent threshold −
√

2ω♯
0.

Proof of Theorem 1. It suffices to consider T ′ = 0.

It follows from Lemmas 4 and 5 (the estimates (27) and (41)) that we have

sup
ξ∈R

h(t, ξ) ≤ θ♯(t) and inf
ξ∈R

h(t, ξ) ≥
[ 1√

infξ h0
+

t

2
W ♯

0

]−2
=: θ♭(t) , (53)

respectively. Apparently θ♯ ≥ θ♭ > 0. Now, Let m(t) be the solution of the following Cauchy

problem
d

dt
m(t) =

√
θ♭(t)

[
− 1

2
m2(t) + ω♯

0 −
1

2

1

θ♯(t)

]
(54)

and

m(0) = inf
ξ∈R

min
{
Z1(0, ξ), Z2(0, ξ)

}
≤ −

√
2ω♯

0. (55)

It is easy to see that m(t) is strictly decreasing and satisfies the assumptions of Lemma 7 as

long as it remains finite. Therefore,

inf
ξ

min
j=1,2

Zj(t, ξ) < m(t).

By monotonicity of m(t), there exists a T1 > 0 such that

1

2
m2(T1)− ω♯

0 =: a > 0.

Hence for any t > T1, one has

m(t) ≤ m(T1) = −
√

2ω♯
0 + 2a < −

√
2ω♯

0. (56)

It follows from (54) that the following differential inequality holds

d

dt
m(t) <

√
θ♭(t)

[
− 1

2
m2(t) + ω♯

0

]
. (57)

Using partial fractions yields

dm

m−
√

2ω♯
0

− dm

m+

√
2ω♯

0

< −
√

2ω♯
0θ

♭(t) dt.

Integrate this inequality from T1 to t > T1 with relevant signs determined by (56),

ln
m(t)−

√
2ω♯

0

m(t) +

√
2ω♯

0

− ln
m(T1)−

√
2ω♯

0

m(T1) +

√
2ω♯

0

< −
√

2ω♯
0

∫ t

T1

√
θ♭(s) ds.
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Combining with the definition of θ♭ in (53) gives

ln
m(t)−

√
2ω♯

0

m(t) +

√
2ω♯

0

<
2

√
2ω♯

0

W ♯
0

ln
[ 2√

infξ h0
+W ♯

0 T1

]
−

2

√
2ω♯

0

W ♯
0

ln
[ 2√

infξ h0
+W ♯

0 t
]

+ ln
m(T1)−

√
2ω♯

0

m(T1) +

√
2ω♯

0

, for t > T1.

By (56) again, the right side of the above expression will decrease as t increases and will approach

0 from above in finite time. This implies m(t) approaches −∞ at the same time. By the

comparison principle, Lemma 7, and by Corollary 6 at the end of Section 2, the only type of

singularity must satisfy (13)-(14). Hence the proof of the theorem is completed. �

3.2. General initial data with small gradients. By (40), we always have an upper bound for

Zj . In order to prove the singularity formation for general initial data, it follows from Theorem 1

that we need only to focus on the following case for the purpose of proving singularity formation,

Z1, Z2 ∈
(
−

√
2ω♯

0, max{Z♯
0,

√
2ω♯

0}
]
. (58)

Note that the condition (58) implies that

|Z2 − Z1| < G0,

where the gap G0 is defined in (17).

The nice thing about (58) is that it gives an additional bound. In particular, considering the

comparison principle in Lemma 7 and especially the − 1
h term in the differential inequality in

(45), we need a much sharper upper bound for h than the previously established one. In fact,

the a priori assumption (58) gives a bound on ∂ξh because by definitions (10), we have∣∣∣∂ξ[hγ/2(t, ξ)]∣∣∣ = γ

2

|Z2 − Z1|
2

<
γ

4
G0 . (59)

In order to turn such estimate into an upper bound on h, we utilize the well-known conservation

of total physical energy for the rotating shallow water system.

For C1
0 initial data (h0 − 1, u0, v0) and strictly positive h, it is straightforward to show that

E(t) defined in (15) is invariant with respect to time, i.e.

E(t) ≡ E0 .

Immediately, by the definition and conservation of physical energy E0, for fixed t, we have∫ ∞

−∞

(
hγ/2(t, ·)− 1

)2
dξ ≤

∫ ∞

−∞

Q(h(t, ξ))

ζ(α♯, γ)
dξ ≤ E0

ζ(α♯, γ)
, (60)

where

α♯(t) = sup
ξ
(hγ/2(t, ξ)− 1) (61)
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and ζ is the function defined as follows

ζ(β, γ) :=
1

γ2

{
(β + 1)

− 2
γ + (β + 1)

− 2
γ
−1

}
. (62)

The proof of the estimate (60) is given in Proposition 11 in Appendix B. Next, we estimate

α♯(t) in the following lemma.

Lemma 8. Fix T > 0. Consider a classical solution (h, u, v) ∈ C1([0, T ) × R) of the rotating

shallow water system (6) with C1
0 initial data (h0 − 1, u0, v0) so that infξ h0 > 0. Impose the

additional bound (58) on the weighted gradients of Riemann invariants for all time t ∈ [0, T ).

Then,

α♯(t) < F−1
γ (G0E0) , (63)

where α♯(t) is defined in (61) and F−1
γ is the inverse of function Fγ defined by (19).

Proof. Throughout the proof, we always have uniform boundedness of h, u, v,R1, R2 and uniform

strict positive lower bound of h guaranteed by Lemmas 4 and 5.

For fixed t ∈ [0, T ), it follows from Proposition 12 in Appendix B that we have

(α♯(t))3 =sup
ξ
(hγ/2(t, ξ)− 1)3

≤3

4
∥hγ/2 − 1∥2L2

∥∥∂ξ(hγ/2)∥∥L∞

<
3

4

E0

ζ(α♯(t), γ)

γ

4
G0,

where α♯(t) is the function defined in (61) and the estimates (60) and (59) are used. Hence

Fγ(α
♯) =

16

3γ
(α♯)3 ζ(α♯, γ) < G0E0.

Therefore, by the monotonicity of Fγ , we prove (63). �

We are ready to state and prove the main theorem of finite time singularity formation for the

solutions with arbitrarily small initial gradients.

Theorem 9. Under the same assumptions and notations as Lemma 8, if

−
√
2ω♯

0 < inf
ξ

{
Z1, Z2}

∣∣∣
t=0

< −
√
2

√
ω♯
0 −

[
F−1
γ

(
G0E0

)
+ 1

]− 2
γ
, (64)

then infξ
{
Z1, Z2} will reach −

√
2ω♯

0 at a finite time that is bounded by a continuous function

of G0, E0, ω
♯
0, and

{
Z1, Z2}

∣∣∣
t=0

.
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Proof. We prove the theorem by the contradiction argument. Suppose that the theorem is not

true so that the additional gap condition (58) is always true. Then, we can apply the estimate

(63) obtained in Lemma 8 to have

sup
ξ

h(t, x) < h∗0 :=
[
F−1
γ

(
G0E0

)
+ 1

] 2
γ
.

This leads to, as long as m(t) ∈ (−
√

2ω♯
0, 0),

sup
ξ∈R

√
h(t, ξ)

(
− 1

2
m2(t) + ω♯

0 −
1

h(t, ξ)

)
<

√
h∗0

(
− 1

2
m2(t) + ω♯

0

)
− 1√

h∗0
.

Then, we choose m(t) to be the solution of the following initial value problem for the ordinary

differential equation 
d

dt
m(t) =

√
h∗0

(
− 1

2
m2(t) + ω♯

0

)
− 1√

h∗0
,

m(0) = inf
ξ

{
Z1, Z2}

∣∣∣
t=0

.

Meanwhile, by assumption (64), we have

m(0) < −
√
2

√
ω♯
0 −

1

h∗0
.

Then, a straightforward calculation shows that m(t) is decreasing and negative, and reaches

−
√

2ω♯
0 at a finite time. Furthermore, it is easy to see that m(t) satisfies the assumptions of

comparison principle, Lemma 7. Therefore, by Lemma 7, infξ{Z1, Z2} also reaches −
√

2ω♯
0 at a

finite time. The proof of the theorem is completed. 2

It is easy to see that Theorem 2 is a direct consequence of Theorems 1 and 9.

4. Klein-Gordon Equation and Global Existence

In this section, we prove Theorem 3. For simplicity, we only consider γ = 2 which is from the

geophysical rotating shallow water system.

Differentiate the third equation in (6) with respect to t, and combine it with the second

equation in (6) and (8) to obtain

∂ttv − ∂ξ

(
1

2(ω0(ξ)− ∂ξv)2

)
+ v = 0,

i.e.

∂ttv −
∂ξξv

(ω0(ξ)− ∂ξv)3
+ v =

−ω′
0(ξ)

(ω0(ξ)− ∂ξv)3
. (65)

This is a typical quasilinear Klein-Gordon equation. The well-posedness for the Cauchy problem

(6) and (7) is equivalent to study the well-posedness for the Klein-Gordon equation (65).
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For a general funtion ω0(ξ), the linear part of the equation (65) is a Klein-Gordon operator

with variable linear coefficients. There are very limited results for this type of equations because

of lack of understanding for the associated linear operator. If ω0(ξ) is a constant and, without

loss of generality, we assume that ω0(ξ) ≡ 1, then the equation (65) can be written as

∂ttv −
1

(1− ∂ξv)3
∂ξξv + v = 0. (66)

Note that by Taylor series

1

(1− ∂ξv)3
= 1 + 3 ∂ξv + 6(∂ξv)

2 + · · · (67)

Then the system is equivalent to

∂ttv − ∂ξξv + v = (3∂ξv + 6(∂ξv)
2)∂ξξv +R4 = ∂ξ

(3
2
(∂ξv)

2 + 2(∂ξv)
3
)
+R4. (68)

where R4 contains quartic terms and higher order terms.

The equation (68) is a typical quasilinear Klein-Gordon equation with constant linear coef-

ficients and quadratic nonlinearity. It has attracted much attention in analysis since 1980’s.

When the spatial dimension is larger than or equal to 4, the global existence of classical solu-

tions to quasilinear Klein-Gordon equation with quadratic nonlinearity was proved in [15]. The

breakthrough for study on three dimensional Klein-Gordon equation with quadratic nonlinearity

was made by Klainerman [16] and Shatah [26] independently by using the vector field approach

and normal form method, respectively. Two dimensional semilinear Klein-Gordon equation with

quadratic nonlinearity was established in [21, 22] by combining the vector field approach and

normal form method together. Note that the equation (68) is a one dimensional quasilinear

Klein-Gordon equation with quadratic nonlinearity. Since the dispersive decay rate for one di-

mensional Klein-Gordon equation is only t−1/2, it is not easy to study global existence of small

solutions of Klein-Gordon equation in one dimensional setting with general nonlinearity. In [8],

Delort introduced null conditions on the structure of quadratic and cubic nonlinearities and

then obtained the global existence result subject to such null conditions by performing delicate

analysis with the tools of normal form and vector field, and with the hyperbolic coordinate

transformation.

We denote the quadratic and cubic nonlinearities of the Klein-Gordon equation (68) as

Q(∂2
ξ v, ∂ξv) = 3∂ξv∂

2
ξ v and P (∂2

ξ v, ∂ξv) = 6(∂ξv)
2∂2

ξ v. (69)

It is easy to see that Q is linear with respect to ∂2
ξ v for fixed ∂ξv and P is homogeneous of

degree 2 in ∂ξv and homogeneous of degree 1 in ∂2
ξ v. Let us define (here and below, primes do

not indicate derivatives)

Q′′
1(∂

2
ξ v, ∂ξv) = −iQ(−∂2

ξ v, i∂ξv) and P ′′
2 (∂

2
ξ v, ∂ξv) = −P (−∂2

ξ v, i∂ξv), (70)
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where i =
√
−1. If we introduce the following functions of two variables as

q′′1(ω0, ω1) = Q′′
1(ω

2
1, ω1) and p′′2(ω0, ω1) = P ′′

2 (ω
2
1, ω1), (71)

then the straightforward computations yiled

q′′1(ω0, ω1) = −3ω3
1 and p′′2(ω0, ω1) = −6ω4

1.

This implies that the quantity Φ(y) defined in [8, (1.7)-(1.9) in page 7] must be identically zero

(with all other relevant q′′k , p
′′
k being identically zero), i.e., the nonlinearity of the equation (68)

satisfies the null condition defined in [8, Definition 1.1 in page 7]. Hence it follows from [8,

Theorem 1.2] and [9, Theorem 1.2] that we prove Theorem 3 for the global existence of small

solutions for the rotating shallow water system. Note that the initial data in theorems of [8, 9]

are in terms of (v, ∂tv), which is a natural choice for the Cauchy problem of the Klein-Gordon

equation (68). Whereas the smallness assumptions in our Theorem 3 are in terms of (u0, v0),

they are related to (v, ∂tv) by the third equation in (6).

Appendix A. The Lagrangian formulation for rotating shallow water system

In this appendix, we give the proof for the equivalence between the Eulerian formulation of

rotating shallow water system and its Lagrangian formulation.

Suppose that σ is defined in (3). Then, for any C1 scalar-valued functions f(t, x), we can

define f̃(t, ξ) := f(t, σ(t, ξ)) that satisfies the following identity,

∂tf̃(t, ξ) = ∂tf(t, x)
∣∣∣
x=σ(t,ξ)

+ u(t, x) ∂xf(t, x)
∣∣∣
x=σ(t,ξ)

. (72)

Suppose that (h̃, ũ, ṽ) are defined in (4). The mass conservation of the (Eulerian) rotating

shallow water system as in the first equation in (1) becomes

∂th̃(t, ξ) + h̃(t, ξ)∂xu(t, x)
∣∣∣
x=σ(t,ξ)

= 0. (73)

Differentiating the equation in (3) with respect to ξ yields

∂t∂ξσ(t, ξ) = ∂ξ σ(t, ξ)∂xu(t, x)
∣∣∣
x=σ(t,ξ)

. (74)

Combining the last two equations gives

∂t
[
h̃(t, ξ) ∂ξσ(t, ξ)

]
= 0.

On the other hand, the initial condition for σ in (3) amounts to ξ = ϕ(σ(0, ξ)). Combining it

with (2) which we differentiate with respect to ξ yields

h(0, σ(0, ξ)) ∂ξσ(0, ξ) = 1 i.e. h̃(0, ξ) ∂ξσ(0, ξ) = 1 . (75)

Therefore, it follows from the last two equations that one has

h̃(t, ξ) ∂ξσ(t, ξ) ≡ 1 for all t ∈ [0, T ). (76)
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This, together with the chain rule, gives

∂ξ f̃(t, ξ) =
1

h̃(t, ξ)
∂xf(t, x)

∣∣∣
x=σ(t,ξ)

.

Proposition 10. For C1 solutions with non-vacuum initial data, the Lagrangian rotating shal-

low water system (5) is equivalent to the original Eulerian rotating shallow water system (1).

That is to say,

(a) given a C1([0, T ]× R) solution (h, u, v) of (1) with 0 < ch ≤ h(0, x) ≤ Ch, then (h̃, ũ, ṽ)

defined by (2), (3) and (4) is a solution of (5);

(b) given a C1([0, Tmax] × R) solution (h̃, ũ, ṽ) of (5) with 0 < ch ≤ h̃(0, ξ) ≤ Ch, let

(h, u, v)(t, x) := (h̃, ũ, ṽ)(t,Υ(t, x)) where Υ(t, x) satisfies ∂tΥ(t, x) = −ũ(t,Υ(t, x)) h̃(t,Υ(t, x)),

Υ(0, x) = χ−1(x)
(77)

with χ−1 the inverse of bijection χ defined as

χ(ξ) =

∫ ξ

0

1

h̃(0, z)
dz. (78)

Then (h, u, v) solves system (1).

Proof. We need only to prove part (b).

By (77), for any C1 scalar-valued functions f̃(t, ξ) and f(t, x) := f̃(t,Υ(t, x)), we have

∂tf(t, x) = ∂tf̃(t, ξ)
∣∣∣
ξ=Υ(t,x)

− ũ(t, ξ)h̃(t, ξ) ∂ξ f̃(t, ξ)
∣∣∣
ξ=Υ(t,x)

. (79)

Hence, the first equation in (5) can be written as

∂th(t, x) = −
(
h̃ ∂ξ(ũ h̃)

)∣∣∣
ξ=Υ(t,x)

. (80)

Furthermore, it follows from (77) that one has

∂t[∂xΥ(t, x)] = −∂xΥ(t, x)∂ξ(ũh̃)
∣∣∣
ξ=Υ(t,x)

. (81)

Combining (80) and (81) yields

∂t

(
∂xΥ(t, x)

h(t, x)

)
= 0, (82)

where we need h to stay away from zero. On the other hand, the initial data of Υ in (77)

amounts to x = χ(Υ(0, x)). Combine it with (78) which we differentiate with respect to x to

obtain
∂xΥ(0, x)

h̃(0,Υ(0, x))
= 1, i.e.,

∂xΥ(0, x)

h(0, x)
= 1.

This together with (82) implies
∂xΥ(t, x)

h(t, x)
≡ 1.
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Thus, by the chain rule, any C1 scalar-valued function f̃(t, ξ) and f(t, x) := f̃(t,Υ(t, x)) satisfy

∂xf(t, x) = h(t, x) ∂ξ f̃(t, ξ)
∣∣∣
ξ=Υ(t,x)

. (83)

Substituting this into (79) gives

∂tf(t, x) = ∂tf̃(t, ξ)
∣∣∣
ξ=Υ(t,x)

− u ∂xf(t, x). (84)

Finally, thanks to (83) and (84), we have the Lagrangian-to-Eulerian substitution rules: “re-

place ∂ξ with 1
h ∂x and then replace ∂t with (∂t + u∂x)”. Apply them to transform the system

(5) to its Eulerian formulation (1). �

Appendix B. Two elementary propositions

In this appendix, we present two elementary propositions which are used in Section 3.

Proposition 11. Given any two positive constants α and β satisfying −1 < α ≤ β, then

α2 ≤ Q((α+ 1)
2
γ )

ζ(β, γ)
, (85)

where Q and ζ are defined in (16) and (62), respectively.

Proof. Define

q(α) := Q((α+ 1)
2
γ )− α2 ζ(β, γ) .

By the definition of Q and straightforward differentiation, we have

q′(α) =
2

γ
(α+ 1)

2
γ
−1 · 1

γ

{[
(α+ 1)

2
γ

]γ−2
−

[
(α+ 1)

2
γ

]−2}
− 2α ζ(β, γ)

=
2α

γ2

{
(α+ 1)

− 2
γ + (α+ 1)

− 2
γ
−1 − (β + 1)

− 2
γ − (β + 1)

− 2
γ
−1

}
.

Since α ∈ (−1, β], it is apparent from the above that q′(α)α ≥ 0. Therefore, q(α) ≥ q(0) = 0.

In other words, the estimate (85) is proved. �

Proposition 12. Given a compactly supported function g(ξ) ∈ C1(R), one has

∥g3∥L∞ ≤ 3

4
∥g∥2L2 ∥g′∥L∞ . (86)

Proof. This is a special case of the Gagliardo-Nirenberg interpolation inequality, but we prove

it for completeness.

For any ξ ∈ R, one has

min{∥g∥L2(−∞,ξ), ∥g∥L2(ξ,∞)} ≤ 1

2
∥g∥L2(R) .

Without loss of generality, one assumes ∥g∥L2(−∞,ξ) = min{∥g∥L2(−∞,ξ), ∥g∥L2(ξ,∞)}. Hence,∣∣g3(ξ)∣∣ = ∣∣∣ ∫ ξ

−∞

d

dξ
g3(ξ) dξ

∣∣∣ ≤ 3 ∥g∥2L2((−∞,ξ)) ∥g
′∥L∞((−∞,ξ)) ≤

3

4
∥g∥2L2(R) ∥g

′∥L∞(R). (87)
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Thus we have the desired inequality (86). 2
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